
Tutorial
pISSN 2586-5293 eISSN 2586-534X

Business Communication Research and Practice 2020;3(2):122-129
https://doi.org/10.22682/bcrp.2020.3.2.122

122 http://www.e-bcrp.org

From Words to Numbers: Getting Started with Text
Analysis for Applied Social Scientists

Hyun Woo Kim1, Hyejung Chang2

1Pennsylvania State University, State College, PA, USA
2Kyung Hee University, Seoul, Korea

Objectives: With texts as unstructured data everywhere, text analysis or natural language processing (NLP) is a rapidly growing ac-
ademic field that has great potential for novel research among many applied social scientists and practitioners. This paper presents a
practical introduction to NLP using Python as a useful tool for text analysis.
Methods: Starting with installation of Python and an external library for NLP, this paper describes a step-by-step process of data
preparation, transformation, and summarization for text data using examples. The example texts were obtained from a transcribed
business meeting record of a multinational company based in Helsinki.
Results: From the initial unstructured text data having numerous irrelevant elements, the data preparation procedures of tokeniza-
tion, removing stop words, stemming, and lemmatization result in a set of words useful for main analyses. The next step of transform-
ing the words to numbers was conducted using a bag-of-words method by assigning a unique value to each word in a matrix. As the
last step, the matrix is computed for frequency summarization using TF-IDF (Term Frequency and Inverse Document Frequency).
Conclusions: Unlike structured data, many unstructured text data are not generated for the purpose of data analysis. With numeric
data reproduced by the process presented in this paper, communication researchers can perform various statistical methods or use
machine learning algorithms. Beyond the scope of this paper, it is strongly recommended to study statistics and computational lin-
guistics as well as have a working knowledge on R and/or Python for advanced text analysis.

Key Words: Text Analysis, Natural Language Processing, Unstructured Data, Python, Data Preparation

Introduction

Text analysis or natural language processing (NLP) is a rapidly
growing academic field that has great potential for developing

novel research topics for applied social scientists and practi-
tioners. Communication researchers have largely relied on a va-
riety of texts—including letters, report, storytelling, textbooks,
meeting logs, or even colloquial dialogue—as their primary data
in their analyses. These researchers, however, have traditionally
used social surveys that scrutinize communicators (rather than
communication text or a “corpus” per se) or qualitative conver-
sational analysis as their primary methods largely due to a lack
of available computational or quantitative methods for text data
analysis (Herring, 2004).

The situation has changed. Texts as unstructured data are
now everywhere. Unlike structured data in which a limited
number of data fields indicate clearly defined category or values,

Received: May 11, 2020 Accepted: May 20, 2020
Corresponding author: Hyejung Chang
School of Management, Kyung Hee University, 26, Kyungheedae-ro,
Dongdaemun-gu, Seoul 02447, Korea
Tel: +82-2-961-9432, Fax: +82-2-961-0515, E-mail: hjchang@khu.ac.kr

This is an Open Access article distributed under the terms of the Creative Commons
Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and
reproduction in any medium, provided the original work is properly cited.
Copyright © 2020 Korean Association for Business Communication.

https://doi.org/10.22682/bcrp.2020.3.2.122 http://www.e-bcrp.org | 123

Hyun Woo Kim, et al.

text data as unstructured data do not contain strictly defined
data fields. Unlike structured data, many unstructured text data
(such as formal letters/reports, websites or social media, infor-
mal colloquial dialogues, or online community comments) are
not generated for the purpose of data analysis. It requires a spe-
cific data management process for transforming text informa-
tion to numeric data, which is the topic that will be discussed in
this tutorial.

This article introduces a few basic concepts and practical
methods for text analysis using Python, a popular scripting
language for data science (Hayes, 2020). More specifically, this
tutorial provides a step-by-step guide on how to prepare the text
data, how to transform strings into numeric data, and then how
to summarize the frequencies of words. The data preparation
procedure includes tokenization, removing stop words, stem-
ming, and lemmatization.

Basic Steps for Text Analysis

Data Collection
Traditionally, limited resources did not allow social scientists
to examine the entire target population and encouraged them
to develop sampling methods to find out a sub-population that
represents the entire target population. However, conventional
sampling methods and coding schemes may not be as useful
in text analysis as they are in ordinary social science survey re-
search. Text sample data often do not represent the entire target
population. For example, Annual Corporate Social Responsi-
bility (CSR) Reports published from companies may be easily
available for researchers (Vartiak, 2016) but may not represent
the attitudes of all multinational companies towards CSR.

In addition, the recent development in big data storage and
web scraping using R and/or Python commercial web mining
tools, and database management system (DBMS) allows re-
searchers to collect the entire census of archived text data on the
web. A few examples include local newspaper articles regarding
CSR in the U.S. that are available from NewsBank, official tweets
mentioning CSR from the companies, archived annual CSR
reports in the form of PDF files downloadable from the official
websites of companies that are listed in Wharton Research Data
Services (WRDS) (https://wrds-www.wharton.upenn.edu/).
Web scraping techniques are beyond the scope of this tutorial.
There are a number of excellent introductory textbooks in this
field, and interested readers could refer to Russell and Klassen
(2019).

Installing Python and NLTK
To practice with this tutorial, readers should have Python in-

stalled on their computer. Anaconda (https://www.anaconda.
com/) is a popular, open-source, and comprehensive Python
package for data scientists. It is also a good choice for quantita-
tively oriented social scientists. Once having Anaconda down-
loaded and installed, we will have most of the external libraries
necessary for this tutorial. We need to download and install
nltk, a natural language toolkit (NLTK) library particularly
for NLP (https://www.nltk.org/). Type conda install
-c anaconda nltk in a command-line interface to install
nltk. For interactive code writing, it is also recommended to
use Jupyter Notebook, which will be installed along with Ana-
conda. In a code cell, type nltk.download() and finish up
installing nltk.

Data Preparation
After researchers have collected text data of interest already, they
will find that unstructured text data contain numerous irrelevant
elements that are not useful for further analysis. To illustrate the
preparation procedures for data to be analyzed, the following
sentence is used as an example. It is selected from a transcribed
business meeting record of a Helsinki-headquartered multina-
tional company (Kim, Du-Babcock, & Chang, 2020).

Example 1. Sample sentence 1

All the planning is is that we are ready to
start after the end of October.

Our sample sentence is assigned to a new string sentence
in the command [1].
In [1]:

sentence="All the planning is is
that we are ready to start after the
end of October."

Tokenization
First, researchers may want to “tokenize” the sentence into a set
of words with the command [2]. In English, words can be rela-
tively easily tokenized by splitting the sentence by space.
In [2]:

tokens=sentence.split(' ')
print(tokens)

['All', 'the', 'planning', 'is',
'is', 'that', 'we', 'are', 'ready',
'to', 'start', 'after', 'the',
'end', 'of', 'October.']

Now, a new Python list called tokens is created. The length
of this list is 16, which is the number of words of the sentences.

From Words to Numbers

124 | http://www.e-bcrp.org https://doi.org/10.22682/bcrp.2020.3.2.122

In this example, a punctuation after October ('October.')
is disturbing because it makes the last element different from
October in the later analysis. We can tokenize the sentence
using nltk more conveniently with command [3].
In [3]:

import nltk
tokens= nltk.tokenize.word_tokenize

(sentence)
print(tokens)

['All', 'the', 'planning', 'is',
'is', 'that', 'we', 'are', 'ready',
'to', 'start', 'after', 'the',
'end', 'of', 'October', '.']

Note that this tokenization converted upper case words to the
lower case. Now the length of tokens is 17 and a punctuation
(.) is also counted as a word in this list independently. Note that
there are two “is” reflecting the speaker’s stutter, and they are
counted twice independently. Researchers may want to remove
the second “is” considering the repeated be-verb is a human
error, but we will handle this issue later.

Removing Stop Words
Next, we need to remove all of the stop words (a, an, the, is, are,
etc.) from the sentence because they are extremely common and
not substantially meaningful. There are publicly available lists of
stop words online. For better performance, researchers may want
to build a unique list of stop words for the purpose of their own
research. For simplicity, we will use a list of stop words available
from nltk in this tutorial, as shown in the command [4].
In [4]:

stopwords= nltk.corpus.stopwords.
words('english')

print(stopwords[:5])

['i', 'me', 'my', 'myself', 'we']

To remove stop words from tokens, we will utilize a list
comprehension in Python, as shown in the command [5].
In [5]:

import string
newtokens=[word for word in tokens

if not word in stopwords
and not word in string.
punctuation]

print(newtokens)

['All', 'planning', 'ready', 'start',
'end', 'October']

Note that we do not have stop words (the, is, that, and so
forth) anymore in the result. We also used string.punctu-

ation to remove any punctuation symbols from our example.
For more delicate text manipulations, it is necessary to utilize
regular expressions or re. It is beyond the scope of this tutorial,
but interested readers can refer to López and Romero (2014).

Stemming
Another sophisticated issue we have not considered so far is
that several different wordings can be used with affixations to
deliver a similar meaning in English. For example, planning is a
morpheme consisting of plan and -ing. Although planning
is obviously different from plan, what they refer to could be
similar by context. Stemming is a useful approach for making
different morphological variants consistent. There are a vari-
ety of stemming techniques; in this tutorial, we will use Porter
stemmer in particular, as in command [6].
In [6]:

stemmer= nltk.stem.porter.
PorterStemmer()

stemmed=[stemmer.stem(token)
for token in newtokens]

print(stemmed)

['all', 'plan', 'readi', 'start',
'end', 'octob']

Now planning was transformed to plan (plans or plan-
ner will be transformed in the same way), ready to readi
(like readiness, readily, and etc.). An unexpected error is that
October is transformed to octob. This error is, however, not
critical for obtaining consistency in our example because there
is obviously no morphological variant in October.

Lemmatization
One may find the stemming process too naïve because it does
not take into consideration the grammatical contexts. In our
example sentence, planning is a noun which connotes the pres-
ence of a formally organized policy or procedure to achieve a
goal, and researchers may want to distinguish it from casual
uses of plan (such as “I plan to”). We need lemmatization for
this purpose. We could easily use Word Net lemmatizer from
nltk with a pos, which stands for part of speech (POS) argu-
ment as shown in the command [7].
In [7]:

lemmatizer= nltk.stem.
WordNetLemmatizer ()

lemmatizer.lemmatize("planning", pos="n")

Out[7]: 'planning'

The argument pos="n" indicates that planning is used as a
noun in this particular context. The result is now planning, not

https://doi.org/10.22682/bcrp.2020.3.2.122 http://www.e-bcrp.org | 125

Hyun Woo Kim, et al.

plan. Note that lemmatization requires accurate POS informa-
tion regarding how each word is used in the context for reliable
performance. However, tagging all of the words appearing in a
document is often highly labor-intensive work. Although it is
beyond the scope of this tutorial, there are several automated
POS tagging algorithms available to end-users or researchers.

Transforming String into Numeric Data: Bag-of-Words
Once we prepare a list of words, we are ready to transform these
string data into numeric data. The most intuitive method is
what we call a bag-of-words. This approach transforms words to
numbers by simply assigning a unique value to each word. For
instance, we have a set of six unique words in our example:

['all', 'plan', 'readi', 'start', 'end',

'octob'] (1)

By assigning unique values to each word, 1 is assigned to
'all', 2 is assigned to 'plan', 3 is assigned to 'readi',
4 is assigned to 'start', 5 is assigned to 'end', and 6 is as-
signed to 'octob'. Equivalently, a set of six words is changed
to the following numeric set:

[1, 2, 3, 4, 5, 6] (2)

Note that the value itself is nominal and do not carry any
meaningful information as it is. Therefore, researchers often
prefer one-hot encoding that dichotomizes values into a series
of 0 (not used) or 1 (used), as shown in the matrix below. A
bag-of-words could be represented as a matrix (or so-called a
document-term matrix) where each row represents a document
(or an equivalent unit) and each column represents individual
words used in the document. In our current matrix, there is only
one row because we have one sentence in our example. It has six
columns because we have six unique words in the example.

all plan readi start End octob

1 1 1 1 1 1

or

[1,1,1,1,1,1] (3)

Now we can use a bit more of a sophisticated example to
show how useful the bag-of-words approach is. The second ex-
ample contains two sentences.

Example 2. Sample sentence 2

A: Meeting in the night before or just a
full day meeting?

B: Do we start previous night? Do we start
it in the night, night, the previous
night?

In this example, we have two speakers and they use a variety
of same and different words in the conversation. In Python,
sklearn provides useful functions to extract features from
texts. The sklearn.feature_extraction.text con-
verts a collection of text documents to a matrix of token counts,
as shown in the command [8].
In [8]:

from sklearn.feature_extraction.text
import CountVectorizer

corpus=["Meeting in the night
before or just a full day
meeting?",
"Do we meet previous night?
Do we meet it in the night,
night, the previous night?"]

vectorizer= CountVectorizer(binary
=True)

p rint(‌‌vectorizer.fit_transform‌
(corpus).todense())

[[1 1 0 1 1 0 1 0 1 1 1 0 1 0]
[0 0 1 0 1 1 0 1 0 1 0 1 1 1]]

We first imported CountVectorizer from sklearn.
feature_extraction.text in particular. Then we en-
tered two sentences as two separate texts in a list (corpus).
We called CountVectorizer with an argument of bina-
ry=True which dichotomizes words into the used (1) or not
used (0). When we fit and transform vectorizer, we used
todense() in order to obtain a dense matrix instead of a
sparse matrix. The resulting matrix is as follows:

[[1 1 0 1 1 0 1 0 1 1 1 0 1 0]

 [0 0 1 0 1 1 0 1 0 1 0 1 1 1]] (4)

The new matrix has two rows and 14 columns because our
example has two sentences consisting of 14 unique words. The
result returns a series of 0 (not used) and 1 (used), but it does
not show the labels corresponding each cell in the column and
row of the matrix. The following command [9] prints out a list
of words used and their index in the vectors.

In [9]:
print(vectorizer.vocabulary_)

From Words to Numbers

126 | http://www.e-bcrp.org https://doi.org/10.22682/bcrp.2020.3.2.122

{'meeting': 8, 'in': 4, 'the': 12,
'night': 9, 'before': 0, 'or': 10,
'just': 6, 'full': 3, 'day': 1,'do':
2, 'we': 13, 'meet': 7, 'previous':
11, 'it': 5}

There are 0 to 13 numbers for a list of 14 elements: from 0
for before to 13 for we. Because Python counts a series from
zero, the first element is 0, the second is 1, and the last element
is n-1 for n elements in a list. In our example, the indices of in,
night, and the are 4, 9, and 12, respectively. We can confirm
that two persons use “in” (5th column of the matrix), “night”
(10th column), and “the” (13th column) in common in this
conversation (noted in bold).

We may find this example insufficient because stop words
(in, the, before) as well as substantially same words are used
without stemming (meeting and meet). There are multiple
methods to address this issue. In this tutorial, we will take a less
Pythonic but simpler way. More specifically, we will pre-process
corpus (as shown in the command [10]) before using Count-
Vectorizer. In this command, new_corpus is generated
as a list that contains multiple strings after applying stemmer.
stem() and nltk.tokenize.word_tokenize().
In [10]:

new_co rpus=[' '.join(
[stemmer.stem(token)
 for token in nltk.tokenize.
word_tokenize(line)
if not token.lower() in
stopwords
and not token in string.
punctuation])

for line in corpus]
print(new_corpus)

['meet night full day meet', 'meet
previou night meet night night pre-
viou night']

Now we can fit and transform the example sentences with
CountVectorizer() as shown in the command [11]. Now
this result contains no stop words, and all of the words were
properly stemmed.
In [11]:

vectorizer= CountVectorizer(binary
=True)

dtm= vectorizer.fit_transform(new_
corpus).todense()

print(dtm)
print(vectorizer.vocabulary_)

[[1 1 1 1 0]
[0 0 1 1 1]]

{'meet': 2, 'night': 3, 'full': 1,
'day': 0, 'previou': 4}

Note that so far we have only used single words/tokens (called
unigram) when we define each cell of the matrix. We can ex-
pand to two consecutive words (bigram), three words (trigram),
or more words (n-gram) to construct a bag-of-word matrix. It
might be particularly useful in the context where there are some
keywords consisting of more than one word—for example,
“social science”, “business communication”, “data science”, and
so forth. For this purpose, we can use the argument ngram_
range in CountVectorizer()as shown in the command
[12]. The argument ngram_range sets the length of the se-
quence of consecutive words in the given text. The two numbers
in the parenthesis imply the minimum and maximum numbers
of consecutive words.
In [12]:

vectorizer= CountVectorizer(
stop_words='english',
ngram_range=(1,2),
binary=True)

dtm=‌‌vectorizer.fit_transform(new_corpus).
todense()

print(dtm)
print(vectorizer.vocabulary_)

[[1 1 1 1 0 1 1 0 0 0 0 0]
 [0 0 1 1 1 1 0 1 1 1 1 1]]
{'meet': 2, 'night': 5, 'day': 0,
'meet night': 3, 'night day': 6,
'day meet': 1, 'previou': 10, 'meet
previou': 4, 'previou night': 11,
'night meet': 7, 'night night': 8,
'night previou': 9}

After applying n-gram of range (1, 2), the matrix of 5 col-
umns for one words resulted from the command [11] is con-
verted to a matrix of 12 columns including unigrams and bi-
grams.

Summarizing Frequencies using TF-IDF
So far, we have manually removed stop words that appear in the
document extremely frequently but carry no substantial infor-
mation. Zipf ’s law states that the (log of) frequency of words
is inversely proportional to (the log of) its frequency rank in
various natural language contexts (Piantadosi, 2014). Frequent
words are often useless to feature the unique characteristics of
documents. For example, the use of “a/an,” “with,” “about,” or
“for” will be not informative when classifying medical docu-
ments from military reports. However, “ambulance,” “pneu-
mothorax,” “landmine,” or “surface-to-air” are useful for this

https://doi.org/10.22682/bcrp.2020.3.2.122 http://www.e-bcrp.org | 127

Hyun Woo Kim, et al.

purpose. Although they are not so frequent, words such as “pre-
vention” would not be as useful as others because these words
can often be used in both contexts.

For various purposes of text analysis, we could assume that
some words are more informative when they appear frequent-
ly in specific types of documents, but not too so frequently in
other types of documents. TF-IDF (Term frequency and inverse
document frequency) serves this purpose (Aizawa, 2003). The
formula of TF-IDF slightly differs in the literature, but the basic
ideas of TF and IDF are defined as below. The TF-IDF score is
defined by multiplying TF with IDF.

TF = #
#

total of terms in the document
f times a term T appears in a document Do

IDF = log
#

#
f documents with a term T

total f documents
o

od n

TF – IDF score=TF • IDF

In this tutorial, we use sklearn to calculate TF-IDF scores.
We will not remove stop words from the sentences first in
this example. As shown in the command [13], we have par-
ticularly imported TfidfVectorizer class, and fitted and
transformed our data with TfidfVectorizer, as we did in
CountVectorizer.
In [13]:

import numpy
numpy.set_printoptions(precision=2)
f rom sklearn.feature_extraction.text
import‌TfidfVectorizer
vectorizer=TfidfVectorizer()
tfidf=‌vectorizer.fit_transform‌

(corpus).todense()
print(tfidf)
print(vectorizer.vocabulary_)

[[0.31 0.31 0. 0.31 0.22 0. 0.31 0.
0.62 0.22 0.31 0. 0.22 0.]
[0. 0. 0.38 0. 0.14 0.19 0. 0.38 0.
0.54 0. 0.38 0.27 0.38]]
{'meeting': 8, 'in': 4, 'the': 12,
'night': 9, 'before': 0, 'or': 10,
'just': 6, 'full': 3, 'day': 1,'do':
2, 'we': 13, 'meet': 7, 'previous':
11, 'it': 5}

Note that vocabulary_ gives us the same result with the
output from the command [9]. We can compare the docu-
ment-term matrix (above matrix (4)) with this TF-IDF score
matrix (5).

[[0.31 0.31 0 0.31 0.22 0 0.31 0 0.62 0.22

0.31 0 0.22 0]

 [0 0 0.38 0 0.14 0.19 0 0.38 0 0.54

0 0.38 0.27 0.38]] (5)

Some words (or tokens) have obvious higher TF-IDF scores
(for example, TF-IDF score of meeting for A is .62 and that of
night for B is .54) than other words. As shown in Example 2
and the corpus in the command [8], the word meeting was
used twice only by A, and night was used four times by B, al-
though A used night just once. These two words “feature” the
unique characteristic of each document (or each person in our
example), therefore have higher TF-IDF score. Interested read-
ers can conduct the analysis again after stemming meeting
to meet, as shown in the command [14],
In [14]:

new_co rpus=[' '.join([stemmer.stem(token)
for token in nltk.tokenize.word_
tokenize(line)
if not token in string.punctuation])

for line in corpus]
print(new_corpus)

['meet in the night befor or just a
full day meet','Do we meet previ-
ou night Do we meet it in the night
night the previou night']

Now we have a numeric data set representing the presence/
absence or how important individual words/tokens are in var-
ious contexts, as shown in matrices (4) or (5). We can perform
various statistical methods or machine learning algorithms to
regress, cluster, or classify the data sets.

Discussion

In the era of big data where people, devices, infrastructures, and
sensors constantly communicate and generate data, data analy-
sis is now the keyword and trend of the times for those not only
in the field of data science but also in all functions of the busi-
ness industry who wish to find hidden insights from data. An
increasing amount of research has also shown significant value
in using a big data analytics approach to examine the business
communication process. With texts as unstructured data every-
where, text analysis or NLP is a rapidly growing academic field
that has great potential for novel research among many applied
social scientists and practitioners.

Text mining is a technology aimed at extracting and process-
ing useful information from text data based on NLP technology.
Since many unstructured text data are not generated for the pur-

From Words to Numbers

128 | http://www.e-bcrp.org https://doi.org/10.22682/bcrp.2020.3.2.122

pose of data analysis unlike structured data, text data needs to be
converted to numeric data through the process explained in this
paper. In this process, anyone who wants to start analyzing the
raw data should decide whether to learn R or Python (or both of
them), which are representative open source tools of data analy-
sis at present. The choice of R or Python depends on the type of
data and the nature of the task. Typically, R is a tool that contains
more statistical elements, and Python has good accessibility with
an easy to understand and flexible syntax for more generalized
scientific computing. In this tutorial, Python was used to show
the NLP process because it has the advantage of performing
tasks using available packages or libraries and is an intuitive pro-
gramming language that even beginners can learn easily.

As shown in this paper, the bag-of-word method or TF-IDF
method is an important starting point for NLP, and they still
have great potential for various quantitative or computational
analyses—for example, simple word frequency analysis, word
network analysis (Drieger, 2013), language detection (Stensby,
Olmmen, & Granmo, 2010), speech recognition (Washani &
Sharma, 2015), or naïve Bayes spam filters (Rusland, Wahid,
Kasim, & Hafit, 2017). After getting used to the topics covered
in this tutorial, interested researchers will find more advanced
topics such as sentiment analysis (Gupta, 2018), latent Dirichlet
allocation (LDA) (Blei, Ng, & Jordan, 2003), and word embed-
ding (Karani, 2018). Analyzing the text data in the business en-
vironment, the NLP process will provide new opportunities and
increase potential for business growth.

Conclusion

By following the procedure described in this paper, it is possible
to analyze a variety of text data using Python. With a numeric
data set representing the presence/absence or how important
individual words/tokens are in various contexts, communication
researchers can perform various statistical methods or machine
learning algorithms to regress, cluster, or classify contents of data
sets. In addition to the data preparation procedures of texts, the
bag-of-word or TF-IDF methods are important starting points for
NLP and they still have a great potential for various quantitative
or computational analyses. As a mild introduction, this tutorial
does not require any serious knowledge in the field. For advanced
text analysis, however, studying introductory statistics, computa-
tional linguistics, and R and/or Python is strongly recommended.

Conflict of Interest

Hyejung Chang is an editor of Business Communication Re-
search and Practice. However, she did not involve in the peer re-

view evaluation and decision process of this article. Otherwise, no
potential conflict of interest relevant to this article was reported.

References

Aizawa, A. (2003). An information-theoretic perspective of tf–idf
measures. Information Processing & Management, 39(1), 45-65.

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allo-
cation. Journal of Machine Learning Research, 3, 993-1022.

Drieger, P. (2013). Semantic network analysis as a method for visual
text analytics. Procedia - Social and Behavioral Sciences, 79(6), 4-17.

Gupta, S. (2018, January 8). Sentiment analysis: Concept, analysis
and applications. Towards Data Science. Retrieved from https://
towardsdatascience.com/sentiment-analysis-concept-analysis-
and-applications-6c94d6f58c17

Hayes, B. (2020, June 29). Usage of programming languages by data
scientists: Python grows while R weakens. Business Broadway.
Retrieved from http://businessoverbroadway.com/2020/06/29/
usage-of-programming-languages-by-data-scientists-python-
grows-while-r-weakens/

Herring, S. C. (2004). Computer-mediated discourse analysis: An
approach to researching online behavior. In S. Barab, R. Kling, &
J. H. Gray (Eds.), Designing for virtual communities in the service of
learning (pp. 338-376). New York, NY: Cambridge University Press.

Karani, D. (2018, September 2). Introduction to word embedding
and word2vec. Towards Data Science. Retrieved from https://
towardsdatascience.com/introduction-to-word-embedding-and-
word2vec-652d0c2060fa

Kim, H. W., Du-Babcock, B., & Chang, H. (2020). Following the
leader: An analysis of leadership and conformity in business
meetings. IEEE Transactions on Professional Communication,
63(4), 311-326.

López, F., & Romero, V. (2014). Mastering python regular expres-
sions. Olton, UK: Packt.

Piantadosi, S. T. (2014). Zipf ’s word frequency law in natural lan-
guage: A critical review and future directions. Psychonomic Bul-
letin & Review, 21(5), 1112-1130.

Rusland, N. F., Wahid, N., Kasim, S., & Hafit, H. (2017). Analysis
of naïve bayes algorithm for email spam filtering across multiple
datasets. Proceedings of the IOP Conference Series: Materials Sci-
ence and Engineering, 226, 012091.

Russell, M. A., & Klassen, M. (2019). Mining the social web: Data
mining Facebook, Twitter, LinkedIn, Instagram, GitHub, and more.
Sebastopol, CA: O’Reilly Media.

Stensby, A., Oommen, B. J., & Granmo, O. C. (2010). Language
detection and tracking in multilingual documents using weak es-
timators. In E. R. Hancock, R. C. Wilson, T. Windeatt, I. Ulusoy,
& F. Escolano (Eds.), Structural, syntactic, and statistical pattern

https://doi.org/10.22682/bcrp.2020.3.2.122 http://www.e-bcrp.org | 129

Hyun Woo Kim, et al.

recognition (pp. 600-609). Berlin, Germany: Springer.
Vartiak, L. (2016). CSR reporting of companies on a global scale.

Procedia Economics and Finance, 39, 176-183.

Washani, N., & Sharma, S. (2015). Speech recognition system: A
review. International Journal of Computer Applications, 115(18),
7-10.

